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Previously on COMP547
• Energy-based models

• Score-based Models

• Denoising Diffusion Models
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Lecture overview
• Autoregressive models

• Flow models

• Latent Variable models

• Implicit models

• Diffusion models

Disclaimer: Much of the material and slides for this lecture were borrowed from 
—Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas’ Berkeley CS294-158 class
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Lecture overview
• Autoregressive models
– PixelRNN, PixelCNN, PixelCNN++, PixelSNAIL

• Flow models

• Latent Variable models

• Implicit models

• Diffusion models
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Autoregressive Models
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MADE (2015)

https://arxiv.org/pdf/1502.03509.pdf


Autoregressive Models
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PixelRNN/CNN (2016)

https://arxiv.org/pdf/1601.06759.pdf


Autoregressive Models
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WaveNet (2016)

https://deepmind.com/blog/wavenet-generative-model-raw-audio/


Autoregressive Models
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Video Pixel Networks (2017)

https://arxiv.org/abs/1610.00527


Autoregressive Models
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Subscale Pixel Networks (2018)

https://arxiv.org/abs/1812.01608


Autoregressive Models
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Hierarchical Autoregressive Image  
Models with Auxiliary Decoders (2019)

Likelihood-based models currently lag behind their adversarial counterparts in terms of the visual
fidelity and the resolution of their samples. However, adversarial models are known to drop modes of
the distribution, something which likelihood-based models are inherently unlikely to do. Within the
likelihood-based model paradigm, autoregressive models such as PixelCNN tend to be the best at
capturing textures and details in images, because they make no independence assumptions and they
are able to use their capacity efficiently through spatial parameter sharing. They also achieve the best
likelihoods. We describe PixelCNN in more detail in Section 2.

However, autoregressive models are markedly worse at capturing structure at larger scales, and as a
result they tend to produce samples that are lacking in terms of large-scale coherence (see appendix for
a demonstration). This can be partially attributed to the inductive bias embedded in their architecture,
but it is also a consequence of the likelihood loss function, which rewards capturing local correlations
much more generously than capturing long-range structure. As far as the human visual system is
concerned, the latter is arguably much more important to get right, and this is where adversarial
models currently have a substantial advantage.
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Figure 2: Schematic overview of a hierarchi-
cal autoregressive model. The dashed lines
indicate different stages, which capture differ-
ent scales of structure in the input image.

To make autoregressive models pay more attention
to large-scale structure, an effective strategy is to
remove local detail from the input representation al-
together. A simple way to do this for images is by
reducing their bit-depth [29, 30]. An alternative ap-
proach is to learn new input representations that ab-
stract away local detail, by training encoder models.
We can then train autoregressive models of the image
pixels conditioned on these representations, as well as
autoregressive priors for these representations, effec-
tively splitting the task into two separate stages [52].
We can extend this approach further by stacking en-
coder models, yielding a hierarchy of progressively
more high-level representations [12], as shown in
Figure 2. This way, we can explicitly assign model
capacity to different scales of structure in the images,
and turn the bias these models have towards capturing
local structure into an advantage. Pseudocode for the
full training and sampling procedures is provided in
the appendix.

Learning representations that remove local detail
while preserving enough information to enable a conditional autoregressive model to produce high-
fidelity pixel-level reconstructions is a non-trivial task. A natural way to do this would be to turn the
conditional model into an autoencoder, so that the representations and the reconstruction model can
be learnt jointly. However, this approach is fraught with problems, as we will discuss in Section 3.

Instead, we propose two alternative strategies based on auxiliary decoders, which are particularly
suitable for hierarchical models: we use feed-forward (i.e. non-autoregressive) decoders or masked
self-prediction (MSP) to train the encoders. Both techniques are described in Section 4. We show that
the produced representations allow us to construct hierarchical models trained using only likelihood
losses that successfully produce samples with large-scale coherence. Bringing the capabilities of
likelihood-based models up to par with those of their adversarial counterparts in terms of scale and
fidelity is important, because this allows us to sidestep any issues stemming from mode dropping and
exert more control over the mapping between model capacity and image structure at different scales.

We make the representations learnt by the encoders discrete by inserting vector quantisation (VQ)
bottlenecks [52]. This bounds the information content of the representations, and it enables more
efficient and stable training of autoregressive priors [51]. In addition, models with VQ bottlenecks do
not suffer from posterior collapse [6], unlike regular VAEs. Because of their discrete nature, we will
also refer to the learnt representations as codes. We cover VQ bottlenecks in neural networks in more
detail in Section 2. We also include a downsampling operation in the encoders so that higher-level
codes have a lower spatial resolution.

The contributions of this work are threefold: we study the problems associated with end-to-end
training of autoencoders with autoregressive decoders. We also propose two alternative strategies for
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https://arxiv.org/abs/1903.04933


Autoregressive Models
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Scaling Autoregressive Video Models (2020)



Autoregressive Models: History of LMs
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Autoregressive Models: OpenAI GPT-2
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In a shocking finding, scientist discovered a herd of unicorns living in a remote, 
previously unexplored valley, in the Andes Mountains. Even more surprising to the 
researchers was the fact that the unicorns spoke perfect English.
The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These four-horned, silver-white 
unicorns were previously unknown to science.
Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.
Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the 
Andes Mountains when they found a small valley, with no other animals or humans. Pérez noticed that the valley had 
what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.
Pérez and the others then ventured further into the valley. “By the time we reached the top of one peak, the water 
looked blue, with some crystals on top,” said Pérez.
Pérez and his friends were astonished to see the unicorn herd. These creatures could be seen from the air without 
having to move too much to see them – they were so close they could touch their horns.
While examining these bizarre creatures the scientists discovered that the creatures also spoke some fairly regular 
English. Pérez stated, “We can see, for example, that they have a common ‘language,’ something like a dialect or 
dialectic.”
Dr. Pérez believes that the unicorns may have originated in Argentina, where the animals were believed to be 
descendants of a lost race of people who lived there before the arrival of humans in those parts of South America.
While their origins are still unclear, some believe that perhaps the creatures were created when a human and a 
unicorn met each other in a time before human civilization. According to Pérez, “In South America, such incidents 
seem to be quite common.”
However, Pérez also pointed out that it is likely that the only way of knowing for sure if unicorns are indeed the 
descendants of a lost alien race is through DNA. “But they seem to be able to communicate in English quite well, 
which I believe is a sign of evolution, or at least a change in social organization,” said the scientist.



Autoregressive Models: OpenAI GPT-3
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Completion from a 
context suggesting the 
model compose a poem 
in the style of Wallace 
Stevens with the title 
‘Shadows on the Way’. 



Autoregressive Models: OpenAI GPT-3
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Formatted dataset example for CoQA



Autoregressive Models
Huge advances due to:

• Larger batch sizes

• More hidden units

• More layers

• Clever ways to condition on 
auxiliary variables

• Preprocessing

• Computer power

• Several days / weeks of training

• Fewer assumptions
–Masked / Causal Convolutions
–Dilated Convolutions
–Transformers

• Architectural advances

• Loss functions
–Relying heavily on well-behaved 

cross-entropy loss
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GPT-3 (2020)
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Subscale Pixel Networks (2018)

https://arxiv.org/abs/1812.01608
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Autoregressive Models: Future
Still only scratching the surface of what’s possible. 

• Advances with model-parallelism to come 

• Trillion parameter language models trained on all the Internet’s text (ex Google Books / Kindle / 
HackerNews / Reddit / Podcast transcripts, so on). Could compress the Internet’s text.

• Same model for both text and pixels (image / video). Share self-attention blocks and compress both 
of Wikipedia and Youtube / Instagram. Only separate blocks of encoders and decoders. 

• Fast sampling with better low-level core engineering - new kernels with sparsity and efficiency for 
the bottleneck ops. Ex: WaveRNN instead of Parallel Wavenet. 

• Hybrid models with weaker autoregressive structure but trained on a larger scale (Ex: Revisiting 
architectures like Parallel PixelCNN that can provide a good tradeoff between autoregressive 
structure and sampling time with more independence assumptions. 

• New architecture design choices such as self-attention which introduce inductive biases that 
leverage a lot of computation per parameter introduced.
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Autoregressive Models: Future
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• Active topic with cutting edge results 

• Lot of scope for more engineering and creative architecture design  

• Larger models and datasets   

• Successful in all of (un)conditional  video, audio, text, images 

• Sampling Time Engineering 
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Autoregressive Models: Negatives
• No single layer of learned representation 

• Currently, sampling time is slow for practical deployment.

• Not directly usable for downstream tasks. 

• No interpolations.
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Lecture overview
• Autoregressive models

• Flow models
– NICE, RealNVP, 

Autoregressive Flows, 
Inverse Autoregressive 
Flows, Glow, Flow++

• Latent Variable models

• Implicit models

• Diffusion models
49Image credit: Laurent Dinh



Flow Models

50
NICE (Dinh et al 2014)

y1 = x1

y2 = x2 +m (x1)

<latexit sha1_base64="KqzuoXs+ySinAjDqDeeauurGtGo="></latexit>

https://arxiv.org/abs/1410.8516


Flow Models

51

RealNVP (Dinh et al 2016)

y1:d = x1:d

yd+1:D = xd+1:D ! exp (s (x1:d)) + t (x1:d) ,

<latexit sha1_base64="jQ51Jexd91NmkcHg9qUGxpdMbDI=">AAACfHicbVFNb9NAEF2br2K+Aj320BUBlColslGhqFKlCjhwLBJpK2WjaL0eO6uud63dMWpk5Vfwz7jxU7hU3SQOgrYjrebNezOa2Zm0UtJhHP8Owjt3791/sPEwevT4ydNnnecvTpyprYChMMrYs5Q7UFLDECUqOKss8DJVcJqef17opz/AOmn0d5xVMC55oWUuBUdPTTo/WQqF1A1XstCQzaPZpEkOaDanbw4v1pCxBZ31ffSlFdYBM5lByuCiokxBjj23cutaZmUxxZ3W9fFWdTdioLO/M0w63XgQL43eBEkLuqS140nnF8uMqEvQKBR3bpTEFY4bblEKBfOI1Q4qLs55ASMPNS/BjZvl8ub0tWcymhvrn0a6ZP+taHjp3KxMfWbJcequawvyNm1UY/5x3Ehd1QharBrltaJo6OISNJMWBKqZB1xY6WelYsotF+jvFfklJNe/fBOcvBske4P33/a6R5/adWyQLfKS9EhC9skR+UqOyZAI8ifYDnrBTnAZvgr74dtVahi0NZvkPws/XAEnUb4j</latexit>

https://arxiv.org/abs/1605.08803


Glow: Big progress on sample quality
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OpenAI Glow (2018)

https://openai.com/blog/glow/


Flow++: Progress on bits/dim on high 
entropy datasets

53Flow++ (2019)

mixture of logistics 

https://arxiv.org/abs/1902.00275


Flow++: Progress on bits/dim on high 
entropy datasets

54
Flow++ (2019)

https://arxiv.org/abs/1902.00275


Flow Models: Future 
• Learning the mask for coupling 

• Close the gap with autoregressive models even further - use hybrid 
flows?

• Fewer expressive flows vs Several shallow flows 

• Usage of Multiscale Loss - bits/dim vs sample quality tradeoffs

• Representation Learning with Flows 

• Initialization
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Flow Models: Future 
• Glow-level samples with fewer parameters 

• Glow-level samples on 1 MP (1024x1024) images. 

• Dimension reduction 

• Conditional Flow Models: Architecture and Execution

• Summary: Long way to go before GAN level samples and 
autoregressive model-level likelihood scores (and samples) combined 
with stable training and a fixed set of engineering practices.
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Flow Models: Negatives 
• z is as big as x. Models end up becoming big.  

• As of now, no notion of lower dimensional embedding. 

• Careful initialization (not really a negative) 
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Lecture overview
• Autoregressive models

• Flow models

• Latent Variable models
– Approximate likelihood with 

Variational Lower Bound 
– Variational Auto-Encoder, IWAE, 

IAF-VAE, PixelVAE (VLAE), VQ-VAE

• Implicit models

• Diffusion models
69



Latent Variable Models

70

Auto-Encoding Variational Bayes 
(Kingma 2013)

https://arxiv.org/abs/1312.6114


Latent Variable Models: PixelVAE

71

PixelVAE 
(2016)

https://arxiv.org/abs/1611.05013
https://arxiv.org/abs/1611.05013


Latent Variable Models: PixelVAE
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PixelVAE 
(2016)

https://arxiv.org/abs/1611.05013
https://arxiv.org/abs/1611.05013


Latent Variable Models - BIVA

v
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Bidirectional-
Inference Variational 
Autoencoder (BIVA)
(Maaloe et al. 2019)

https://arxiv.org/pdf/1902.02102.pdf


VQ-VAE
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VQ-VAE (2017)

https://arxiv.org/abs/1611.05013
https://arxiv.org/abs/1611.05013


VQ-VAE
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VQ-VAE (2017)

https://arxiv.org/abs/1611.05013
https://arxiv.org/abs/1611.05013


VQ-VAE 2.0

76

VQ-VAE 2.0 (2019)

https://arxiv.org/abs/1611.05013
https://arxiv.org/abs/1611.05013


VQ-VAE 2.0

VQ-VAE 2.0
77

BigGAN Deep



Well known VAE Applications
• Sketch-RNN  

• World Models

• Visual concepts for RL (beta-VAE)

• Generative Query Networks

78



Well known VAE Applications: Sketch-RNN

79
https://magenta.tensorflow.org/assets/sketch_rnn_demo/index.html

yoga poses generated by 
moving through the learned 
representation (latent 
space) of the model trained 
on yoga drawings

https://magenta.tensorflow.org/assets/sketch_rnn_demo/index.html


Well known VAE Applications: World Models

80
https://worldmodels.github.io

https://worldmodels.github.io/


Well known VAE Applications: World Models
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https://worldmodels.github.io

https://worldmodels.github.io/


Well known VAE Applications: beta-VAE

82



SCAN: Learning Hierarchical Compositional 
Visual Concepts

83



SCAN: Learning Hierarchical Compositional 
Visual Concepts

84

Colab Notebook (by Sahin Yener): https://colab.research.google.com/drive/1GD_Rdj-
oPaWm_Y8DaUFdBfJWwMXl8B9R?usp=sharing#scrollTo=0xd_Qnq954ZI

https://colab.research.google.com/drive/1GD_Rdj-oPaWm_Y8DaUFdBfJWwMXl8B9R?usp=sharing


Well known VAE Applications: Generative 
Query Networks

85



VAE: Advantages
• Notion of “compressed” representation learning

• Also gives you approximate log-likelihood 

• Interpolations, retrospective analysis of what the model learns 

• Disentangled representations  

• Generative Model  + Density Model + Latent Variables 
+ Dimensionality Reduction 
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VAE: Disadvantages
• Blurry samples 

• Factorized gaussian posterior or decoder assumptions maybe too 
limiting

• Success on large scale is still on-going work

• Encouraging disentanglement with the KL term still only shown on 
relatively toy domains 

• There maybe other ways to learn better representations or to get better 
samples or get better density estimates (basically, not the best at any 
one thing but gives you all together)
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VAE: Future
• Modern decoders [cross-entropy based, weakly autoregressive]

• More powerful posteriors 

• Hierarchical latent variable models to learn coarse and fine features 
and interpolations

• Discrete latent variable models to prevent posterior collapse and still 
be able to use PixelCNN-like decoders

• Scale at the level of Flow Models training
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Lecture overview
• Autoregressive models

• Flow models

• Latent Variable models

• Implicit models
– Generative Adversarial Networks (GAN)

• Diffusion models
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Generative Adversarial Networks 

106

Original GAN (2014) - Goodfellow et al

https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf


Generative Adversarial Networks 

107

DCGAN - Radford, Metz, Chintala 2015

https://research.fb.com/publications/unsupervised-representation-learning-with-deep-convolutional-generative-adversarial-networks/


Generative Adversarial Networks 

108

StyleGAN (2019)

https://arxiv.org/abs/1812.04948


Generative Adversarial Networks 

109

BigGAN (2019)

https://arxiv.org/abs/1809.11096


VQGAN

110
VQGAN (2020)

https://arxiv.org/abs/1809.11096


Generative Adversarial Networks: Future
• Hard to predict against them 

given an array of the most 
powerful generation results for 
images.  

• Progress in unconditional GANs.

• Handling more fine-grained 
details 

• More complex scenes (multiple 
people with objects)

• Video generation 
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Generative Adversarial Networks: Future
• Lipschitzness constraints (New approaches)

• Conditioning tricks (Feeding in noise at different levels, batch / instance 
normalization)

• Architecture design (Upsampling, downsampling, deep vs wide tradeoff) 

• Objective functions (Hinge Loss …)

• Stability and scalability (Deeper models with fewer parameters + larger 
batch sizes) 

• Perturbations at different levels (StyleGAN) + Coarse / Fine 
interpolations 
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Generative Adversarial Networks: Negatives 
• Plenty of varying engineering tricks and details 

• Hard to know which piece is significantly helping push the cutting-edge 
results

• Ablations for large scale datasets are time-consuming

• Unconditional GANs - sample diversity (or mode dropping behavior) 

• Evaluation metrics to account for generalization

• Ablations / Key pieces / engineering details isn’t a negative specific to 
GANs
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Lecture overview
• Autoregressive models

• Flow models

• Latent Variable models

• Implicit models

• Diffusion models
– Score-based models, Denoising diffusion models
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Score-based models

• d

127

Noise Conditional Score Network (NCSN), Song et al., 2019



Denoising Diffusion Models

128

Denoising Diffusion Probabilistic Models, Ho et al., 2020



Diffusion Models: Advantages
• Sample quality is on par with (or 

even superior to) GAN samples

• Log-likelihood scores on par with 
autoregressive models

• Better distribution coverage, 
more diverse samples

• Stable and scalable training

129

Synthetic face images generated by a score-based model 

ImageNet samples generated by a denoising diffusion model
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Synthetic face images generated by a score-based model 

ImageNet samples generated by a denoising diffusion model
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Diffusion Models: Disadvantages
• Sampling speed is slow since sampling requires multiple steps

• Dimension of the latent codes has the same dimensionality with the 
data

• Defined on continuous distributions
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Diffusion Models: Future
• Numerical ODE solvers to 

improve sampling speed

• Breaking Markovian structure 
again to improve sampling speed

• Diffusion process can be defined 
over a continuous latent space 
obtained by an encoder

• Better architectures

• Hybrid models 
139
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Diffusion Models: Future
• Numerical ODE solvers to 

improve sampling speed

• Breaking Markovian structure 
again to improve sampling speed

• Diffusion process can be defined 
over a continuous latent space 
obtained by an encoder

• Better architectures

• Hybrid models 
144Denoising Diffusion GAN, Xiao et al., ICLR 2022



GANs or Density Models?
• Not true that density models do not need comparable level of engineering details 

and hacks to work as GANs (e.g.: FiLM conditioning, gating, LayerNorm, ActNorm).

• Not true that there is absolutely no theoretical understanding of GANs: Lag behind
empirical practice and difficulty doesn’t mean non-existence

• Blurry / improbable samples (vs) Mode collapse :: Compression at the cost of 
sample quality : Sample quality at the cost of missing modes  

• Apart from amazing samples, GANs are more popular because:
– Works well with less compute (Ex: Good 1024 x 1024 (megapixel) Celeb A samples with few 

couple hours of training on a single V100 GPU)

– Density models are huge, require distributed training - not doable by too many people. Takes 
a lot more time to output reasonably sharp samples. 

– Interpolations and conditional generation [some success on Glow but not possible with 
autoregressive models] - adoption by artists. 
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GANs or Density Models?
• Bright side: Upto to aesthetics / taste in terms of betting on one (density models 

vs GAN)

• Many technological advances in the past have been possible without rigorous 
science built for them (science followed later) [Le Cun: Epistemology of DL]
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Taxonomy
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If training density models...
• If you only care about density and not sampling, go for autoregressive models 
• If you care about sampling time but not too much, autoregressive is still fine. Just 

use smaller models and preferably RNNs [or write efficient convolution / self-
attention]

• If you really can’t afford linear (in number of dimensions) sampling, weaker 
autoregressive models (log time) such as Parallel PixelCNN are worth considering. 

• Notion that autoregressive models are meant for “discrete” is unfounded.
Ex: Alex Graves’ Handwriting Recognition, Sketch-RNN, World Models, CPC.

• Flow Models are good for modeling densities of continuous valued data and are 
getting better for discrete (pixels). Larger models needed for complex datasets.

• If you want both representations and sampling or just want to try the simplest thing 
first, variational auto-encoders with factorized decoders are a natural first choice. 
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When GANs?
• Cool samples 

• Really large images and HQ datasets like faces, buildings, etc. 

• Class-conditional models 

• Image to Image translation problems (edges / seg-map to real image, 
adding texture, adding color, etc.) 

• If you care only about perceptual quality and want controllable 
generation and don’t have lot of compute, GAN is the best choice.
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Summary
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Summary
• New golden era of generative models

– Competition of various approaches: GAN, VAE, flow, diffusion model
– Also, lots of hybrid approaches (e.g., score SDE = diffusion + continuous flow) 

• Which model to use? 
– Diffusion model seems to be a nice option 

for high-quality generation 
– However, GAN is (currently) still a 

more practical solution which needs 
fast sampling (e.g., real-time apps.) 
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Next lecture: 
Self-Supervised Learning
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