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Previously on COMP547

* Energy-based models
« Score-based Models
* Denoising Diffusion Models




Lecture overview

« Autoregressive models
* Flow models
» Latent Variable models

* I[mplicit models

e Diffusion models

Disclaimer: Much of the material and slides for this lecture were borrowed from
— Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas’ Berkeley CS294-158 class



Lecture overview

» Autoregressive models
— PixelRNN, PixelCNN, Pixel CNN++, PixelSNAIL

* Flow models
e Latent Variable models
* Implicit models

e Diffusion models



Autoregressive Models
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https://arxiv.org/pdf/1502.03509.pdf

Autoregresswe Models
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https://arxiv.org/pdf/1601.06759.pdf

Autoregressive Models
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https://deepmind.com/blog/wavenet-generative-model-raw-audio/

Autoregressive Models

Video Pixel Networks (2017)
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https://arxiv.org/abs/1610.00527

Autoregressive Models

Subscale Pixel Networks (2018)
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https://arxiv.org/abs/1812.01608

Autoregressive Models
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Hierarchical Autoregressive Image
Models with Auxiliary Decoders (2019)

11


https://arxiv.org/abs/1903.04933

Autoregressive Models

Scaling Autoregressive Video Models (2020)
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Autoregressive Models: History of LMs

SLP book, 2000 (Shannon, 1951), 3-gram

They also point to ninety nine point six billion dollars from two hundred four oh six three percent of the rates of interest stores as Mexico and Brazil
on market conditions

Sutskever et al, 2011, RNNs
The meaning of life is the tradition of the ancient human reproduction: it is less favorable to the good boy for when to remove her bigger
Jozefowicz et al, 2016, BIG LSTMs

With even more new technologies coming onto the market quickly during the past three years, an increasing number of companies now must tackle
the ever-changing and ever-changing environmental challenges online .

Liu et al, 2018, Transformer
==wings over kansas

==wings over kansas is a 2010 dhamma feature film written and directed by brian ig ariyoshi . it premiered on march 17, 2010 the film tells the story
of three americans who bravely achieved a victory without expected daknfi .

==Wings Over Kansas Plot
the story begins with the faltering success of egypt 's hungry dakfunctionality when he loses his lives around the time when the embarked [...]
Radford et al, 2019, BIG Transformer

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more
surprising to the researchers was the fact that the unicorns spoke perfect English.

The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These four-horned, silver-white unicorns were previously unknown to
science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Perez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they
found a small valley, with no other animals or humans. Perez noticed that the valley had what appeared to be a natural fountain, surrounded by two
peaks of rock and silver snow.

Perez and the others then ventured further into the valley. “By the time we reached the top of one peak, the water looked blue, with some crystals on
top,’ said Perez.

Perez and his friends were astonished to see the unicorn herd. [...] 3



Autoregressive Models: OpenAl GPT-2

In a shocking finding, scientist discovered a herd of unicorns Living in a remote,
previously unexplored valley, in the Andes Mountains. Even more surprising to the

researchers was the fact that the unicorns spoke perfect English.

The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These four-horned, silver-white
unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the
Andes Mountains when they found a small valley, with no other animals or humans. Pérez noticed that the valley had
what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. “By the time we reached the top of one peak, the water
looked blue, with some crystals on top,” said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These creatures could be seen from the air without
having to move too much to see them - they were so close they could touch their horns.

While examining these bizarre creatures the scientists discovered that the creatures also spoke some fairly regular
English. Pérez stated, “We can see, for example, that they have a common ‘language,’ something like a dialect or
dialectic.”

Dr. Pérez believes that the unicorns may have originated in Argentina, where the animals were believed to be
descendants of a lost race of people who lived there before the arrival of humans in those parts of South America.
While their origins are still unclear, some believe that perhaps the creatures were created when a human and a
unicorn met each other in a time before human civilization. According to Pérez, “In South America, such incidents
seem to be quite common.”

However, Pérez also pointed out that it is likely that the only way of knowing for sure if unicorns are indeed the
descendants of a lost alien race is through DNA. “But they seem to be able to communicate in English quite well,
which I believe is a sign of evolution, or at least a change in social organization,” said the scientist.
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Autoregressive Models: OpenAl GPT-3

Context —

The City

BY C. P. CAVAFY

TRANSLATED BY EDMUND KEELEY
[Poem text omitted]

SOME TREES
John Ashbery
[Poem text omitted]

Shadows on the Way
Wallace Stevens

Nobody will come to this place. It is a road that leads nowhere.

The solitude is deep. The mountains are high.

But they are desolate, and they turn the traveler’s face
Towards the North. All the sounds of the world are far away.
When the wind rises above the trees,

The boughs bow to the ground.

Even the birds that inhabit the tangle of weeds

That is the roadside cover, are silent. One listens,

But hears no roar of the forest. One is alone.

One will be taken.

One will be taken.

There is no utterance, there is no conversation,

But one is uneasy all the same....

There is a thin blue mist,

A darkness rising like smoke,

And within that darkness

A possession of the heart.

One will be taken.... It was here, and it will be here again-
Here, under this sky empty and full of light.

Completion from a
context suggesting the
model compose a poem

in the style of Wallace
Stevens with the title

‘Shadows on the Way'.
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Autoregressive Models: OpenAl GPT-3

Context —

Helsinki is the capital and largest city of Finland. It is in the region
of Uusimaa, in southern Finland, on the shore of the Gulf of Finland.
Helsinki has a population of , an urban population of , and a metropolitan
population of over 1.4 million, making it the most populous municipality
and urban area in Finland. Helsinki is some north of Tallinn, Estonia,
east of Stockholm, Sweden, and west of Saint Petersburg, Russia. Helsinki
has close historical connections with these three cities.

The Helsinki metropolitan area includes the urban core of Helsinki, Espoo,
Vantaa, Kauniainen, and surrounding commuter towns. It is the world’s
northernmost metro area of over one million people, and the city is the
northernmost capital of an EU member state. The Helsinki metropolitan
area is the third largest metropolitan area in the Nordic countries

after Stockholm and Copenhagen, and the City of Helsinki is the third
largest after Stockholm and Oslo. Helsinki is Finland’s major political,
educational, financial, cultural, and research center as well as one of
northern Europe’s major cities. Approximately 75% of foreign companies
that operate in Finland have settled in the Helsinki region. The nearby
municipality of Vantaa is the location of Helsinki Airport, with frequent
service to various destinations in Europe and Asia.

Q: what is the most populous municipality in Finland?
A: Helsinki

Q: how many people live there?

A: 1.4 million in the metropolitan area

Q: what percent of the foreign companies that operate in Finland are in
Helsinki?

A: 757
Q: what towns are a part of the metropolitan area?

A:

Target Completion —

Helsinki, Espoo, Vantaa, Kauniainen, and surrounding commuter towns

Formatted dataset example for CoQA
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Autoregressive Models

Huge advances due to:
» Larger batch sizes
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Autoregressive Models

Huge advances due to:
» Larger batch sizes
* More hidden units
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Autoregressive Models

Huge advances due to:

_arger batch sizes
Vliore hidden units

Vliore layers

Language Models are Few-Shot Learners

Abstract

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training
on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic
in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of
thousands of examples. By contrast, humans can generally perform a new language task from only
a few examples or from simple instructions — something which current NLP systems still largely
struggle to do. Here we show that scaling up language models greatly improves task-agnostic,
few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-
tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion
parameters, 10x more than any previous non-sparse language model, and test its performance in
the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning,
with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3
achieves strong performance on many NLP datasets, including translation, question-answering, and
cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as
unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same
time, we also identify some datasets where GPT-3’s few-shot learning still struggles, as well as some
datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally,
we find that GPT-3 can generate samples of news articles which human evaluators have difficulty
distinguishing from articles written by humans. We discuss broader societal impacts of this finding
and of GPT-3 in general.

GPT-3 (2020)
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Autoregressive Models

Huge advances due to:
» Larger batch sizes
* More hidden units

* More layers

» Clever ways to condition on
auxiliary variables

Subscale Pixel Networks (2018)
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https://arxiv.org/abs/1812.01608

Autoregressive Models

Huge advances due to:
» Larger batch sizes
* More hidden units

* More layers

 Clever ways to condition on
auxiliary variables

* Preprocessing
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Autoregressive Models

Huge advances due to:
 Larger batch sizes
* More hidden units

* More layers

 Clever ways to condition on
auxiliary variables

* Preprocessing
« Computer power
» Several days / weeks of training
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Autoregressive Models

Huge advances due to:
» Larger batch sizes
* More hidden units

* More layers

 Clever ways to condition on
auxiliary variables

* Preprocessing
« Computer power
» Several days / weeks of training

* Fewer assumptions
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Autoregressive Models

Huge advances due to:

_arger batch sizes
Vlore hidden units

Vlore layers

Clever ways to condition on
auxiliary variables

Preprocessing
Computer power
Several days / weeks of training

e Fewer assumptions
» Architectural advances
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Autoregressive Models

Huge advances due to:

_arger batch sizes
Vlore hidden units

Vlore layers

Clever ways to condition on
auxiliary variables

Preprocessing
Computer power
Several days / weeks of training

e Fewer assumptions

» Architectural advances
—Masked / Causal Convolutions
—Dilated Convolutions
— Transformers
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Autoregressive Models

Huge advances due to:

_arger batch sizes
Vliore hidden units

Vliore layers

Clever ways to condition on
auxiliary variables

Preprocessing
Computer power
Several days / weeks of training

e Fewer assumptions

» Architectural advances
—Masked / Causal Convolutions
—Dilated Convolutions
— Transformers

* | oss functions

— Relying heavily on well-behaved
cross-entropy loss

27
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Still only scratching the surface of what's possible.
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» Advances with model-parallelism to come
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Autoregressive Models: Future

Still only scratching the surface of what's possible.

» Advances with model-parallelism to come

 Trillion parameter language models trained on all the Internet’s text (ex Google Books / Kindle /
HackerNews / Reddit / Podcast transcripts, so on). Could compress the Internet’s text.
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Autoregressive Models: Future

Still only scratching the surface of what's possible.

» Advances with model-parallelism to come

 Trillion parameter language models trained on all the Internet’s text (ex Google Books / Kindle /
HackerNews / Reddit / Podcast transcripts, so on). Could compress the Internet’s text.

« Same model for both text and pixels (image / video). Share self-attention blocks and compress both
of Wikipedia and Youtube / Instagram. Only separate blocks of encoders and decoders.
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Autoregressive Models: Future

Still only scratching the surface of what's possible.
» Advances with model-parallelism to come

 Trillion parameter language models trained on all the Internet’s text (ex Google Books / Kindle /
HackerNews / Reddit / Podcast transcripts, so on). Could compress the Internet’s text.

« Same model for both text and pixels (image / video). Share self-attention blocks and compress both
of Wikipedia and Youtube / Instagram. Only separate blocks of encoders and decoders.

* Fast sampling with better low-level core engineering - new kernels with sparsity and efficiency for
the bottleneck ops. Ex: WWaveRNN instead of Parallel \VWavenet.
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Autoregressive Models: Future

Efficient Neural Audio Synthesis

Still only scratching the ¢
« Advances with model-

 Trillion parameter langi
HackerNews / Reddit /

e Same model for both t
of Wikipedia and Youtt

* Fast sampling with bet
the bottleneck ops. Ex

Abstract

Sequential models achieve state-of-the-art results
in audio, visual and textual domains with respect
to both estimating the data distribution and gener-
ating high-quality samples. Efficient sampling for
this class of models has however remained an elu-
sive problem. With a focus on text-to-speech syn-
thesis, we describe a set of general techniques for
reducing sampling time while maintaining high
output quality. We first describe a single-layer
recurrent neural network, the WaveRNN, with a
dual softmax layer that matches the quality of
the state-of-the-art WaveNet model. The compact
form of the network makes it possible to gener-
ate 24 kHz 16-bit audio 4 x faster than real time
on a GPU. Second, we apply a weight pruning
technique to reduce the number of weights in the
WaveRNN. We find that, for a constant number of
parameters, large sparse networks perform better
than small dense networks and this relationship
holds for sparsity levels beyond 96%. The small
number of weights in a Sparse WaveRNN makes
it possible to sample high-fidelity audio on a mo-
bile CPU in real time. Finally, we propose a new
generation scheme based on subscaling that folds
a long sequence into a batch of shorter sequences
and allows one to generate multiple samples at
once. The Subscale WaveRNN produces 16 sam-
ples per step without loss of quality and offers
an orthogonal method for increasing sampling
efficiency.

Nal Kalchbrenner *! Erich Elsen "> Karen Simonyan ' Seb Noury' Norman Casagrande' Edward Lockhart'
Florian Stimberg ! Aiiron van den Oord' Sander Dieleman

! Koray Kavukcuoglu '

ages (van den Oord et al., 2016b; Reed et al., 2017) and
videos (Kalchbrenner et al., 2017) and speech and mu-
sic (van den Oord et al., 2016a; Mebhri et al., 2016; Simon
& Oore, 2017; Engel et al., 2017). The models learn the
joint probability of the data by factorizing the distribution
into a product of conditional probabilities over each sample.
This structure lets the models allot significant capacity to
estimate each conditional factor, makes them robust dur-
ing training and easy to evaluate. The ordering encoded
in the structure also makes the sampling process strictly
serial: a sample can be generated only after samples on
which it depends have been produced in accordance with
the ordering. The serial aspect of the sampling process can
make it slow and impractical to use these models to generate
high-dimensional data like speech and video.

Our goal is to increase the efficiency of sampling from
sequential models without compromising their quality. The
time 7'(u) that the sampling process takes is the product of
the number of samples in the target u (e.g. the number of
audio samples in a spoken utterance or the number of pixels
in an image) and the time required to produce each sample.
The latter can be decomposed into computation time ¢(op;)
and overhead d(op;) for each of the NV layers (operations)
of the model:

N
T(w) = fu] 3 (c(op:) + d(op:)) M)

i=1
The value of 7'(u) can grow prohibitively large under any
of the following conditions: if |u is large as in the case
of high-fidelity audio composed of 24,000 16-bit samples

bogle Books / Kindle /
iternet’s text.

olocks and compress both
and decoders.

parsity and efficiency for
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Autoregressive Models: Future

Still only scratching the surface of what's possible.

Advances with model-parallelism to come

Trillion parameter language models trained on all the Internet’s text (ex Google Books / Kindle /
HackerNews / Reddit / Podcast transcripts, so on). Could compress the Internet’s text.

Same model for both text and pixels (image / video). Share self-attention blocks and compress both
of Wikipedia and Youtube / Instagram. Only separate blocks of encoders and decoders.

Fast sampling with better low-level core engineering - new kernels with sparsity and efficiency for
the bottleneck ops. Ex: WWaveRNN instead of Parallel \VWavenet.

Hybrid models with weaker autoregressive structure but trained on a larger scale (Ex: Revisiting
architectures like Parallel PixelCNN that can provide a good tradeoff between autoregressive
structure and sampling time with more independence assumptions.
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Autoregressive Models: Future

Still only scratching the

Parallel Multiscale Autoregressive Density Estimation

 Advances with model

 Trillion parameter lanc
HackerNews / Reddit

« Same model for both
of Wikipedia and Yout

» Fast sampling with be
the bottleneck ops. E:

* Hybrid models with w
architectures like Pare

structure and sampling

Scott Reed ! Aiiron van den Oord ! Nal Kalchbrenner! Sergio Gémez Colmenarejo! Ziyu Wang !
Dan Belov! Nando de Freitas '

Abstract

PixelCNN achieves state-of-the-art results in
density estimation for natural images. Although
training is fast, inference is costly, requiring one
network evaluation per pixel; O(N) for N pix-
els. This can be sped up by caching activations,
but still involves generating each pixel sequen-
tially. In this work, we propose a parallelized
PixelCNN that allows more efficient inference
by modeling certain pixel groups as condition-
ally independent. Our new PixelCNN model
achieves competitive density estimation and or-
ders of magnitude speedup - O(log N) sampling
instead of O(N) - enabling the practical genera-
tion of 512 x 512 images. We evaluate the model
on class-conditional image generation, text-to-
image synthesis, and action-conditional video
generation, showing that our model achieves the
best results among non-pixel-autoregressive den-
sity models that allow efficient sampling.

“A yellow bird with a black head, orange eyes and an orange bill."

Figure 1. Samples from our model at resolutions from 4 X 4 to
256 x 256, conditioned on text and bird part locations in the CUB
data set. See Fig. 4 and the supplement for more examples.

case for WaveNet (Oord et al., 2016; Ramachandran et al.,
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r scale (Ex: Revisiting
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Autoregressive Models: Future

Still only scratching the surface of what's possible.

Advances with model-parallelism to come

Trillion parameter language models trained on all the Internet’s text (ex Google Books / Kindle /
HackerNews / Reddit / Podcast transcripts, so on). Could compress the Internet’s text.

Same model for both text and pixels (image / video). Share self-attention blocks and compress both
of Wikipedia and Youtube / Instagram. Only separate blocks of encoders and decoders.

Fast sampling with better low-level core engineering - new kernels with sparsity and efficiency for
the bottleneck ops. Ex: WWaveRNN instead of Parallel \VWavenet.

Hybrid models with weaker autoregressive structure but trained on a larger scale (Ex: Revisiting
architectures like Parallel PixelCNN that can provide a good tradeoff between autoregressive
structure and sampling time with more independence assumptions.

New architecture design choices such as self-attention which introduce inductive biases that
leverage a lot of computation per parameter introduced.
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Autoregressive Models: Future

* Active topic with cutting edge results
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Autoregressive Models: Future

* Active topic with cutting edge results

» Lot of scope for more engineering and creative architecture design
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Autoregressive Models: Future

* Active topic with cutting edge results
» Lot of scope for more engineering and creative architecture design

» Larger models and datasets
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Autoregressive Models: Future

* Active topic with cutting edge results
» Lot of scope for more engineering and creative architecture design
» Larger models and datasets

» Successftul in all of (un)conditional video, audio, text, images
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Autoregressive Models: Future

* Active topic with cutting edge results

» Lot of scope for more engineering and creative architecture design
» Larger models and datasets

» Successftul in all of (un)conditional video, audio, text, images

« Sampling Time Engineering
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Autoregressive Models: Negatives

* No single layer of learned representation
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Autoregressive Models: Negatives

* No single layer of learned representation

» Currently, sampling time is slow for practical deployment.
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Autoregressive Models: Negatives

* No single layer of learned representation
» Currently, sampling time is slow for practical deployment.

* Not directly usable for downstream tasks.
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Autoregressive Models: Negatives

* No single layer of learned representation
» Currently, sampling time is slow for practical deployment.
* Not directly usable for downstream tasks.

* No Interpolations.
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Lecture overview

« Autoregressive models

* Flow models Data space; ¥ Latentspace ®
— NICE, RealNVP, Inference 5 |
Autoregressive Flows, p - N -
Inverse Autoregressive
Flows, Glow, Flow++ .
Gtz _
» Latent Variable models 2= f71)

* Implicit models

e Diffusion models

Image credit: Laurent Dinh 4
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https://arxiv.org/abs/1410.8516

Flow Models

(a) Forward propagation (b) Inverse propagation

Ld+1:D ® €EXP (3 (xlzd)) + 1 (ajlzd)
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https://arxiv.org/abs/1605.08803

Glow: Big progress on sample quality

OpenAl Glow (2018)

affine coupling layer

f

invertible 1x1 conv

f

actnorm

I

(a) One step of our flow.

@4— split

¥

step of flow x K

t

squeeze

t

step of flow x K

t

squeeze
4

3

x (L—1)

®

(b) Multi-scale architecture (Dinh et al., 2016).

Description | Function | Reverse Function | Log-determinant
Actnorm. Vi,j:¥i; =8OXi;+b | Vi,j:x;; = (yi; —b)/s | h-w-sun(log |s|)
See Section

Invertible 1 x 1 convolution. | Vi,j : y; ; = Wx; ; Vi, j:xi; =W ly,; ; h-w -log|det(W)|
W : e X ¢ or

See Section|3.2

h - w - sum(log |s|)
(see eq. (10))

Affine coupling layer.
See Section|3.3|and

(Dinh et al., 2014)

Xq,Xp = split(x)
(logs, t) = NN(xp)
s = exp(logs)
Ya=8S0OXa+t
Yb = Xp

y = concat(ya,ys)

Ya,¥p = split(y)
(IOgS,t) = NN(yb)
s = exp(logs)

Xa = (Ya — t)/s
Xb = Y¥b

x = concat(Xa, Xp)

sum(log(|s|))
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https://openai.com/blog/glow/

Flow++: Progress on bits/dim on high
entropy datasets

x +— o~ ! (MixLogCDF (z; 7, u,s)) - exp(a) + b (17)

where

MixLogCDF(z; 7, u, s Zm ((x — wi) - exp(—si))

mixture of Ioglst|cs
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i
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Our architecture is defined as a stack of blocks. Each block
consists of the following two layers connected in a residual
fashion, with layer normalization (Ba et al., 2016) after each
residual connection:

|
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Conv = Input — Nonlinearity
— Convsy3 — Nonlinearity — Gate
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Attn = Input — Convix1
— MultiHeadSelfAttention — Gate

< o )
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https://arxiv.org/abs/1902.00275

Flow++: Progress on bits/dim on high
entropy datasets

ImageNet ImageNet
Model family Model (;)IIE?(E;O 32x32 64x64
bits/dim bits/dim

Non-autoregressive RealNVP (Dinh et al., 2016) 3.49 4.28 —

Glow (Kingma & Dhariwal, 2018) 3.35 4.09 3.81
IAF-VAE (Kingma et al., 2016) 3.11 = -

Flow++ (ours) 3.09 3.86 3.69

Autoregressive Multiscale Pixel CNN (Reed et al., 2017) - 3.95 3.70
PixelCNN (van den Oord et al., 2016b) 3.14 - -

PixelRNN (van den Oord et al., 2016b) 3.00 3.86 3.63

Gated PixelCNN (van den Oord et al., 2016c¢) 3.03 3.83 3.57
PixelCNN++ (Salimans et al., 2017) 2.92 - —
Image Transformer (Parmar et al., 2018) 2.90 il d —

PixelSNAIL (Chen et al., 2017) 2.85 3.80 3.52

Flow++ (2019)
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Flow Models: Future
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* Learning the mask for coupling
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Flow Models: Future

* Learning the mask for coupling

» Close the gap with autoregressive models even further - use hybrid
flows?

* Fewer expressive flows vs Several shallow flows
» Usage of Multiscale Loss - bits/dim vs sample quality tradeoffs
* Representation Learning with Flows

e Initialization
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» Glow-level samples with fewer parameters
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Flow Models: Future

» Glow-level samples with fewer parameters
* Glow-level samples on 1 MP (1024x1024) images.
* Dimension reduction

 Conditional Flow Models: Architecture and Execution
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Flow Models: Future

» Glow-level samples with fewer parameters

* Glow-level samples on 1 MP (1024x1024) images.

* Dimension reduction

 Conditional Flow Models: Architecture and Execution

« Summary: Long way to go before GAN level samples and
autoregressive model-level likelihood scores (and samples) combined
with stable training and a fixed set of engineering practices.
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Flow Models: Negatives

* 7 1S as big as x. Models end up becoming big.
» As of now, no notion of lower dimensional embedding.

» Careful initialization (not really a negative)
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Lecture overview

« Autoregressive models
* Flow models

e Latent Variable models

— Approximate likelihood with
Variational Lower Bound

— Variational Auto-Encoder, IWAE,
IAF-VAE, PixelVAE (VLAE), VQ-VAE

* Implicit models

e Diffusion models
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Latent Variable Models
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Auto-Encoding Variational Bayes

(Kingma 2013)
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https://arxiv.org/abs/1312.6114

Latent Variable Models: PixelVAE

PixelVAE

(2016)
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https://arxiv.org/abs/1611.05013
https://arxiv.org/abs/1611.05013

Latent Variable Models: PixelVAE

2B DPixelVAE

| (2016)
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Latent Variable Models - BIVA

(a) Generative model

Bidirectional-
Inference Variational

“ _‘ -.
" 'i; iy
- -

.

4
: | e
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't 15,

oy’
»

\ 4
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=

e o

=8 Autoencoder (BIVA)
8l (Maaloe et al. 2019)
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(b) Inference model
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VQ-VAE

8,88, &
Embedding I
Space | ‘
|
SEENANER Ml ! & )
v . [ z(x). VL
w™ q 2
¢ \ y /}\ /// ﬁ I . Z(x)
I ’/q(;)\' > (o CNN I o ¢ @
CNN [ A e p(x|z,) I @
1] | M 11 p,,zi_ 5 :
2.0 ~ 2,(x : z,(x) ~ q(z|x)
53 |
A\ > — || S J
e B Y
Encoder Decoder

L = log p(z|z4()) + [Isglze(@)] — ellz + Bllze(x) — sgle]|l2

VQ-VAE (2017)



https://arxiv.org/abs/1611.05013
https://arxiv.org/abs/1611.05013

Figure 3: Samples (128x128) from a VQ-VAE with a PixelCNN prior trained on ImageNet images.
From left to right: kit fox, gray whale, brown bear, admiral (butterfly), coral reef, alp, microwave,
pickup.

VQ-VAE (2017)
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VQ-VAE 2.0

VQ-VAE Encoder and Decoder Training Image Generation
Ll
T
= [ e
l Condition
u 7 1' ‘l ’l l.'

Level e e

Reconstruction Generation

VQ-VAE 2.0 (2019)
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VQ-VAE 2.0

BigGAN Deep
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Well known VAE Applications

» Sketch-RNN

 \World Models

* Visual concepts for RL (beta-VAE)

* Generative Query Networks
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Well known VAE Applications: Sketch-RNN

yoga poses generated by
moving through the learned
representation (latent

space) of the model trained
on yoga drawings

-
-
A\

https://magenta.tensorflow.org/assets/sketch rnn demo/index.html
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Well known VAE Applications: World Models

A

= N\
action

At each time step, our agent
receives an observation from
the environment.

v(—( environment

<

| z
\ observation :
e R C

world model i | MDN-RNN (M) J
: h

The Vision Model (V) encodes the
high-dimensional observation into \Vi V
a low-dimensional latent vector.
Z Z
| f ﬁ
h h

Mj > |\/|j M
) -

Z
S =

t

World Model J
4

R p— v L
N

l

action

<

The Memory RNN (M) integrates
the historical codes to create a
representation that can predict
future states.

~

h h
A small Controller (C) uses the v v
representations from both c C
V and M to select good actions. Z Z

a a

The agent performs actions that
go back and affect the environment.

https://worldmodels.github.io



https://worldmodels.github.io/

Well known VAE Applications: World Models

https://worldmodels.github.io
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Well known VAE Applications: beta-VAE

(a) Skin colour

;b) Age/gender

FLEERRe LLLERAL

Figure 4: Latent factors learnt by 5-VAE on celebA: traversal of individual latents demonstrates
that 3-VAE discovered in an unsupervised manner factors that encode skin colour, transition from an
elderly male to younger female, and image saturation.
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SCAN: Learning Hierarchical Compositional
Visual Concepts

A “red suitcase pink wall” “pink wall” B T
g 2 IGI{IOREﬂy( :
W W T
y}
i SCAN \ o
zy, R |III:IIIIIII|Zy2 z
L J A )
W; {AN )WMMON/ IGNORE} {I;a:, ;;ink floor, red wall}
N Sk foon
y Oy |«—1*'131311:17171I7|z Zy, U8 LSS [pink floor]
—_ ¢ a L
N
= 1|k K |/
::3’ zy1 a SN - o
O F WI e " AN(brown obj, white wall}
II TT1:1Y:111 I|—> 0_7: X {hat, cyan floor}
IB_VAE {brown obj, hat, cyan floor, white wall}
m L O[]y |
1 T
x o

Figure 3: A: Learning AND, IN COMMON or IGNORE recombination operators w1th a SCAN model
architecture. Inset demonstrates the convolutional recombination operator that takes in { uyl . ayl : #yz 0y )_}

and outputs {u,,, s i } The capital letters correspond to four disentangled visual primitives: object identity ([),
object colour (O), floor colour (F') and wall colour (W). B: Visual samples produced by SCAN and JMVAE
when instructed with a novel concept recombination. SCAN samples consistently match the expected ground
truth recombined concept, while maintaining high variability in the irrelevant visual primitives. JMVAE samples
lack accuracy. Recombination instructions are used to imagine concepts that have never been seen during model
training. Top: samples for IGNORE; Middle: samples for IN COMMON; Bottom: samples for AND.
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CAN: Learning Hierarchical Compositional
Visual Concepts

A 3 s () 5
~ Symbols intervined with Images ) : 2 Ll E
© Combine concepts to generate images
Now that we have learned the small set of coherent rules in the image space, how do we go from here to naming what we have learned? It is as
simple as doing the same with symbols but also penalizing the deviation from what we have learned from images and at the and we can have

the implementation below! obj_colour0 | dark_purple v wall_colour0 | blue v | floor_colour0 = white v obj_type0 top hat
: ; OP | IGNORE v
First try to pick everything out and then start to leave things undefined and see what changes as you press the button!
AR NE - 219 I I obj_colour1 | dark_purple Vv wall_colour1 | undefined v | floor_colour1 ' undefined v obj_type1 ' top hat

© Generate images from labels

Run Interact

C obj_colour | blue v | wall_colour brown v | floor_colour | grey v obj_type  ice lolly v Run Interact

Colab Notebook (by Sahin Yener): https://colab.research.google.com/drive/1GD Rdj-
oPa\Wm_ Y8DaUFdBfJWwMXI8BIR ?usp=sharing#scrollTo=0xd Qng954/]



https://colab.research.google.com/drive/1GD_Rdj-oPaWm_Y8DaUFdBfJWwMXl8B9R?usp=sharing

Well known VAE Applications: Generative
Query Networks

-
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* Notion of “compressed” representation learning

87



VAE: Advantages

* Notion of “compressed” representation learning

* Also gives you approximate log-likelihood

88



VAE: Advantages

* Notion of “compressed” representation learning

* Also gives you approximate log-likelihood

 Interpolations, retrospective analysis of what the model learns

89



VAE: Advantages

* Notion of “compressed” representation learning

* Also gives you approximate log-likelihood

 Interpolations, retrospective analysis of what the model learns

* Disentangled representations

90



VAE: Advantages

* Notion of “compressed” representation learning

* Also gives you approximate log-likelihood

 Interpolations, retrospective analysis of what the model learns
* Disentangled representations

» Generative Model + Density Model + Latent Variables +
Dimensionality Reduction

9N
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VAE: Disadvantages

* Blurry samples
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VAE: Disadvantages

* Blurry samples

» Factorized gaussian posterior or decoder assumptions maybe too
limiting

» Success on large scale is still on-going work

* Encouraging disentanglement with the KL term still only shown on
relatively toy domains

* There maybe other ways to learn better representations or to get better
samples or get better density estimates (basically, not the best at any

one thing but gives you all together)
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VAE: Future

* Modern decoders [cross-entropy based, weakly autoregressive]
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VAE: Future

* Modern decoders [cross-entropy based, weakly autoregressive]

* More powerful posteriors

 Hierarchical latent variable models to learn coarse and fine features
and interpolations

* Discrete latent variable models to prevent posterior collapse and still
be able to use Pixel CNN-like decoders

» Scale at the level of Flow Models training
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Lecture overview

« Autoregressive models
* Flow models
» Latent Variable models

* Implicit models
— @Generative Adversarial Networks (GAN)

e Diffusion models

105



Generative Adversarial Networks

Original GAN (2014) - Goodfellow et al



https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

Generative Adversarial Networks

DCGAN - Radford, Metz, Chintala 2015
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Generative Adversarial Networks

StyleGAN (2019)

' v ' Latent z € Z
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Noise
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https://arxiv.org/abs/1812.04948

Generative Adversarial Networks

z Class

[ Linear ]
—s 4x4x16ch

Image

109


https://arxiv.org/abs/1809.11096

VQGAN

reallfake
Codebook Z Transformer I|| tlrlt]e
o IS AFEG
1 p(s) = I1; p(sils<i) .. et

CNN
Discriminator

argmin.cz |2 — z||

quantization

VQGAN (2020)
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Generative Adversarial Networks: Future

* Hard to predict against them
given an array of the most
powerful generation results for
Images.

* Progress in unconditional GANSs.

« Handling more fine-grained
detalls

* More complex scenes (multiple
people with objects)

 Video generation
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» Lipschitzness constraints (New approaches)
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Generative Adversarial Networks: Future

» Lipschitzness constraints (New approaches)

» Conditioning tricks (Feeding in noise at different levels, batch / instance
normalization)

» Architecture design (Upsampling, downsampling, deep vs wide tradeoff)
» Objective functions (Hinge Loss ...)

» Stability and scalability (Deeper models with fewer parameters + larger
batch sizes)

» Perturbations at different levels (StyleGAN) + Coarse / Fine
Interpolations
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Generative Adversarial Networks: Negatives

* Plenty of varying engineering tricks and details
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Generative Adversarial Networks: Negatives

* Plenty of varying engineering tricks and details

* Hard to know which piece is significantly helping push the cutting-edge
results

» Ablations for large scale datasets are time-consuming
» Unconditional GANs - sample diversity (or mode dropping behavior)
 Evaluation metrics to account for generalization

» Ablations / Key pieces / engineering details isn't a negative specific to
GANSs
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Lecture overview

« Autoregressive models
* Flow models

 Latent Variable models
* Implicit models

e Diffusion models

— Score-based models, Denoising diffusion models
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Score-based models

2

l‘-.

.
Lo

oise Conditional Score Network (NCSN), Song et al., 2019
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Denoising Diffusion Models
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Denoising Diffusion Isrobabilistic Models . Ho,vJain. Abbeel * arxiv

Denoising Diffusion Probabilistic Models, Ho et al., 2020
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Diffusion Models: Advantages

« Sample quality is on par with (or
even superior to) GAN samples

» Log-likelihood scores on par with
autoregressive models

» Better distribution coverage,
more diverse samples

» Stable and scalable training
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Diffusion Models: Advantages

» Sample quality is on par with (or Table 2: NLLs and FIDs (ODE) on CIFAR-10.
even superior to) GAN samples Model NLL Test | FID |
RealNVP (Dinh et al., 2016) 3.49 :
) ) ) iResNet (Behrmann et al., 2019) 3.45 -
* Log-likelihood scores on par with Glow (Kingma & Dhariwal, 2018) 3.3 :
- MintNet (Song et al., 2019b) 3.32 -
autoregressive models Residual Flow (Chen et al., 2019) 328 4637
FFJORD (Grathwohl et al., 2018) 3.40 -
Flow++ (Ho et al., 2019) 3.29 -
DDPM (L) (Ho et al., 2020) <3.70° 13.51
DDPM (Lgimpie) (Ho et al., 2020) < 3.75°  3.17
DDPM 3.28 3.37
DDPM cont. (VP) 3.21 3.69
DDPM cont. (sub-VP) 3.05 3.56
DDPM-++ cont. (VP) 3.16 3.93
DDPM++ cont. (sub-VP) 3.02 3.16
DDPM-++ cont. (deep, VP) 3.13 3.08

DDPM-++ cont. (deep, sub-VP) 2.99 2.92
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Diffusion Models: Advantages

« Sample quality is on par with (or
even superior to) GAN samples

* Log-likelihood scores on par with
autoregressive models

« Better distribution coverage,
more diverse samples
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Diffusion Models: Advantages

« Sample quality is on par with (or
even superior to) GAN samples

» Log-likelihood scores on par with
autoregressive models

» Better distribution coverage,
more diverse samples

» Stable and scalable training
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« Sampling speed is slow since sampling requires multiple steps
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Diffusion Models: Disadvantages

« Sampling speed is slow since sampling requires multiple steps

* Dimension of the latent codes has the same dimensionality with the
data

137



Diffusion Models: Disadvantages

« Sampling speed is slow since sampling requires multiple steps

* Dimension of the latent codes has the same dimensionality with the
data

 Defined on continuous distributions

138



Diffusion Models: Future



Diffusion Models: Future

* Numerical ODE solvers to
Improve sampling speed

—— Stochastic process

Score-based modeling with SDE, Song et al., ICLR 2021 140




Diffusion Models: Future

* Numerical ODE solvers to
Improve sampling speed

* Breaking Markovian structure

again to iImprove sampling speed

total steps

Step O

10
20
50 @
100 8

1000 §

DDIM, Song et al., ICLR 2021 4,




Diffusion Models: Future

° N u m e I'I Ca | O D E SO | Ve I'S .to Table 3: Gen:lati:lc;esults on C;llele)j’-Hi-;jj
. ] etho
I m p rove Sa m pl I n g S pe ed Ours I\;i(éhéackbone 5377(()) 376.2827
NVAE [20] 0.70 29.76
 Breaking Markovian structure VAES  NCPNAE[S6 - 2470
. . . DC-VAE [77] - 15.80
agaln to improve sampling speed Sere  SDED2] N
Flows GLOW [85] 1.03 68.93
Aut. Reg. SPN [86] 0.61

Adv. LAE [87] - 19.21

 Diffusion process can be defined
over a continuous latent space CAN L pGoANsE . 808
obtained by an encoder

Latent Space Diffusion
Datax Hocader, p(2o) > P(z1)
e——9< e q(zo|x) -
(R e——o——2
"4 ~@— @ \\
<>

B:—i|

®-= S ——@
Reconst. < P
p(x|zo) Decoder KL(q(zo|x)||p(zo)) Latent Space Denoising

Latent SGM, Vahdat et al., NeurlPS 2021 142




Diffusion Models: Future

 Numerical ODE solvers to
Improve sampling speed

* Breaking Markovian structure
again to iImprove sampling speed

» Diffusion process can be defined
over a continuous latent space

Channéls Depth Heads Attention BigGAN Rescale  FID FID
b . d b d resolutions up/downsample resblock 700K 1200K

O talne y an enCO er 160 2 1 16 X X 15.33  13.21
128 4 -021  -0.48

. 4 -0.54  -0.82

32,16,8 072 -0.66

» Better architectures ; e 1o
v 0.16 0.25

160 2 4 32,16,8 v X 314 -3.00

Table 1: Ablation of various architecture changes, evaluated at 700K and 1200K iterations

Guided Diffusion, Dhariwal and Nichol, 2021 .3




Diffusion Models: Future

30 —@— Denoising Diffusion GAN (ours)
—@— FastDDPM (Kong & Ping)
. —@— DDIM (Song et al.)
 Numerical ODE solvers to “Eeei
~®— LSGM (Vahdat et al.)
—@— Probability Flow (Song et al.)
improve Sampling Speed 20 Score SDE, PC (Song et al.)
SNGAN+DGflow (Ansari et al.)
StyleGAN w/o ADA (Karras et al.)
StyleGAN w/ ADA (Karras et al.)

- Breaking Markovian structure \\
agaln to improve sampling speed - o

FID

 Diffusion process can be defined
over a continuous latent space

obtained by an encoder uak@ ;

......................................

Q(-"’r, | | x)

Suruonpuo))

) Posteriorsamglﬂiﬂrﬂygﬂm’i b
* Better architectures ﬂ ERERONN

. G(z:ti\z,t) J
* Hybrid models -

Denoising Diffusion GAN, Xiao et al., ICLR 2022 .,
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* Not true that density models do not need comparable level of engineering details
and hacks to work as GANs (e.g.: FILM conditioning, gating, LayerNorm, ActNorm).
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GANs or Density Models?

Not true that density models do not need comparable level of engineering details
and hacks to work as GANs (e.g.: FILM conditioning, gating, LayerNorm, ActNorm).

Not true that there is absolutely no theoretical understanding of GANs: Lag behind
empirical practice and difficulty doesn’'t mean non-existence

Blurry / improbable samples (vs) Mode collapse :: Compression at the cost of
sample quality : Sample quality at the cost of missing modes

Apart from amazing samples, GANs are more popular because:

— Works well with less compute (Ex: Good 1024 x 1024 (megapixel) Celeb A samples with few
couple hours of training on a single V100 GPU)
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GANs or Density Models?

Not true that density models do not need comparable level of engineering details
and hacks to work as GANs (e.g.: FILM conditioning, gating, LayerNorm, ActNorm).

Not true that there is absolutely no theoretical understanding of GANs: Lag behind
empirical practice and difficulty doesn’'t mean non-existence

Blurry / improbable samples (vs) Mode collapse :: Compression at the cost of
sample quality : Sample quality at the cost of missing modes

Apart from amazing samples, GANs are more popular because:

— Works well with less compute (Ex: Good 1024 x 1024 (megapixel) Celeb A samples with few
couple hours of training on a single V100 GPU)

— Density models are huge, require distributed training - not doable by too many people. Takes
a lot more time to output reasonably sharp samples.
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GANs or Density Models?

Not true that density models do not need comparable level of engineering details
and hacks to work as GANs (e.g.: FILM conditioning, gating, LayerNorm, ActNorm).

Not true that there is absolutely no theoretical understanding of GANs: Lag behind
empirical practice and difficulty doesn’'t mean non-existence

Blurry / improbable samples (vs) Mode collapse :: Compression at the cost of
sample quality : Sample quality at the cost of missing modes

Apart from amazing samples, GANs are more popular because:

— Works well with less compute (Ex: Good 1024 x 1024 (megapixel) Celeb A samples with few
couple hours of training on a single V100 GPU)

— Density models are huge, require distributed training - not doable by too many people. Takes a lot
more time to output reasonably sharp samples.

— Interpolations and conditional generation [some success on Glow but not possible with
autoregressive models] - adoption by artists.
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GANs or Density Models?

* Bright side: Upto to aesthetics / taste in terms of betting on one (density models
vs GAN)

* Many technological advances in the past have been possible without rigorous
science built for them (science followed later) [Le Cun: Epistemology of DL]

Theory often Follows Invention . ‘

» Telescope [1608] » Optics [1650-1700]

» Steam engine [1695-17135] » Thermodynamics [1824-....]

» Electromagnetism [1820] » Electrodynamics [1821]

» Sailboat [?77] » Aerodynamics [1757]

» Airplane [1885-1905] » Wing theory [1907]

» Compounds [??77?] » Chemistry [1760s]

» Feedback amplifier [1927] » Electronics [....]

» Computer [1941-1945] » Computer Science [1950-1960]

» Teletype [1906] » Information Theory [1948] 153



Taxonomy
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If training density models...

* |f you only care about density and not sampling, go for autoregressive models
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If training density models...

* |f you only care about density and not sampling, go for autoregressive models

* |f you care about sampling time but not too much, autoregressive is still fine. Just
use smaller models and preferably RNNs [or write efficient convolution / self-

attention]
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If training density models...

* |f you only care about density and not sampling, go for autoregressive models

* |f you care about sampling time but not too much, autoregressive is still fine. Just
use smaller models and preferably RNNs [or write efficient convolution / self-

attention]

* |f you really can't afford linear (in number of dimensions) sampling, weaker
autoregressive models (log time) such as Parallel PixelCNN are worth considering.
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If training density models...

* |f you only care about density and not sampling, go for autoregressive models

* |f you care about sampling time but not too much, autoregressive is still fine. Just
use smaller models and preferably RNNs [or write efficient convolution / self-
attention]

* |f you really can't afford linear (in number of dimensions) sampling, weaker
autoregressive models (log time) such as Parallel PixelCNN are worth considering.

» Notion that autoregressive models are meant for “discrete” is unfounded.
Ex: Alex Graves' Handwriting Recognition, Sketch-RNN, World Models, CPC.
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If training density models...

* |f you only care about density and not sampling, go for autoregressive models

* |f you care about sampling time but not too much, autoregressive is still fine. Just
use smaller models and preferably RNNs [or write efficient convolution / self-
attention]

* |f you really can't afford linear (in number of dimensions) sampling, weaker
autoregressive models (log time) such as Parallel PixelCNN are worth considering.

» Notion that autoregressive models are meant for “discrete” is unfounded.
Ex: Alex Graves' Handwriting Recognition, Sketch-RNN, World Models, CPC.

* Flow Models are good for modeling densities of continuous valued data and are
getting better for discrete (pixels). Larger models needed for complex datasets.
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If training density models...

* |f you only care about density and not sampling, go for autoregressive models

* |f you care about sampling time but not too much, autoregressive is still fine. Just
use smaller models and preferably RNNs [or write efficient convolution / self-
attention]

* |f you really can't afford linear (in number of dimensions) sampling, weaker
autoregressive models (log time) such as Parallel PixelCNN are worth considering.

» Notion that autoregressive models are meant for “discrete” is unfounded.
Ex: Alex Graves' Handwriting Recognition, Sketch-RNN, World Models, CPC.

* Flow Models are good for modeling densities of continuous valued data and are
getting better for discrete (pixels). Larger models needed for complex datasets.

* |f you want both representations and sampling or just want to try the simplest thing
first, variational auto-encoders with factorized decoders are a natural first choice.
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When GANSs?



When GANSs?

» Cool samples
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When GANSs?

» Cool samples

* Really large images and HQ datasets like faces, buildings, etc.
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When GANSs?

» Cool samples
* Really large images and HQ datasets like faces, buildings, etc.

e Class-conditional models
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When GANSs?

» Cool samples
* Really large images and HQ datasets like faces, buildings, etc.
» Class-conditional models

* [mage to Image translation problems (edges / seg-map to real image,
adding texture, adding color, etc.)
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When GANSs?

» Cool samples
* Really large images and HQ datasets like faces, buildings, etc.
» Class-conditional models

* [mage to Image translation problems (edges / seg-map to real image,
adding texture, adding color, etc.)

* |f you care only about perceptual quality and want controllable
generation and don't have lot of compute, GAN is the best choice.
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Summary

TABLE 1: Comparison between deep generative models in terms of training and test speed, parameter efficiency, sample
quality, sample diversity, and ability to scale to high resolution data. Quantitative evaluation is reported on the CIFAR-10
dataset [114] in terms of Fréchet Inception Distance (FID) and negative log-likelihood (NLL) in bits-per-dimension (BPD).

[Bond-Taylor et al. 2021]

Method Train Sample  Param. Sample Relative Resolution FID NLL (in
Speed Speed Effic. Quality  Divers.  Scaling BPD)
Generative Adversarial Networks
DCGAN [169] Sexkdok ek x Fokokx Hexk * *ok 17.70 -
ProGAN [102] ok Kkokokok Hokokk Hexok *x Hkok ek 15.52 -
BigGAN [17] Hkkok Kk okk Fkkk Fkkok * Kok kok 14.73 -
StyleGAN2 + ADA [103] *kk ok kkk Fkkk *okkk *x Fokkkk 242 -
Energy Based Models
IGEBM [42] *okk ok Fokkokok Hokke Hokx Hokk 379 -
Denoising Diffusion [80] *ox *x xhk *okok ok KKk Fok Kk 3.17 < 3.75
DDPM++ Continuous [191] *k *kk Hkk Hkok *kkok Fokkok 2.92 2.99
Flow Contrastive [51] * *kk * Hok Fkk *k 37.30 ~ 3.27
VAEBM [226] *ok Kok Fokok Hkok Hokox Fokkok 12.19 -
Variational Autoencoders
Convolutional VAE [110] Hkkkok Hkrkk kA ok *xxk *k 106.37 <4.54
Variational Lossy AE [27] * * = *x HxAk * - <295
VQ-VAE [171], [215] Hk Kk Hok Frk Fokdk Hokkdk - < 4.67
VD-VAE [29] Fokok Hokdok Forok Hoxok Fokokk Fokkkok - < 2.87
Autoregressive Models
PixelRNN [214] * * * * xxAK Fokok - 3.00
Gated PixelCNN [213] * * * Hok Fok KAk Hokok 65.93 3.03
PixellQN [161] * * * Hx FAorhx Fokk 49.46 -
Sparse Trans. + DistAug [30], [99] ok * Fok Fkkk HkrAK Fokk 14.74 2.66
Normalizing Flows
RealNVP [39] * HkAk ~ * FkAAK *ak - 3.49
Masked Autoregressive Flow [165]  ** * *k * *xK *k - 430
GLOW [111] * Kokkk * *k *kkhk Fokkk 45.99 3.35
FFJORD [56] * Hokx ok kdok Kk Fxxkx *ok - 3.40
Residual Flow [24] *k *kkk Fokokk *x Kk KA K Fokkk 46.37 3.28
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Summary

* New golden era of generative models

— Competition of various approaches: GAN, VAE, flow, diffusion model

— Also, lots of hybrid approaches (e.g., score SDE = diffusion + continuous flow)

* Which model to use?

— Diffusion model seems to be a nice option

for high-quality generation

— However, GAN is (currently) still a
more practical solution which needs
fast sampling (e.g., real-time apps.)

Generative l\ Denoising
Adversarial ¥ : \ Diffusion
Networks/.' "\ Models

Variational Autoencoders,
Normalizing Flows
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Next lecture:
Self-Supervised Learning



